CENTRE COURT APARTMENTS STATE COLLEGE, PA

Anthony Dente Thesis Tech One Advisor: Ali Memari 10/05/07

Executive Summary

The Centre Court Apartments are located in the borough of State College, Pennsylvania and were designed by Frederick J. Fernsler, AIA with Jesse Smith, PE as the structural engineer. L. S. Fiore Construction was the general contractor on the project that completed it's 16 month construction process in August 06'. The total cost of the project was \$13.6 million, which includes a large addition to an adjacent building which will not be covered in this report. The building stands at 67.5 feet and contains five levels of student housing atop two levels of parking, intermixed with lobby and commercial area on the ground floor.

This report analyzes the loads bearing on the structure as well as spot checks of key structural elements of the design in place. ASCE 7-05 was the baseline used in calculating all gravity loads, dead, live and snow, as well as the lateral wind and seismic forces acting on the system.

The results exhibited that wind was the governing lateral force system in both base shear and overturning moment, therefore its analysis was used to spot check the shear resisting masonry system that wraps the exterior of the building. This system, as well as the other systems analyzed against the obtained load in this report, was found to be sufficient or justifiably oversized.

Contents

Structural System

Codes

Framing

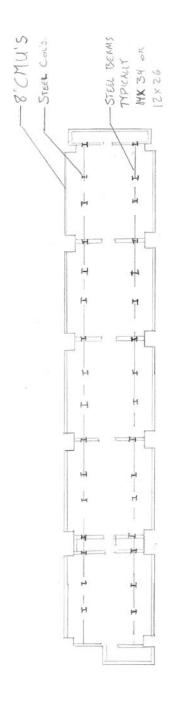
Structural Design

Loads

Spot Checks

Appendix

Structural System


Listed below are the prominent structural elements contained in Centre Court Apartments:

- 8" CMU exterior above grade and 10" CMU exterior below grade
 - Load bearing units conforming to ASTM C90
 - Net Compressive Stress = 3000 PSI
 - Above grade CMU's contain Dur-O-Wall every other course
 - Block cells with bars are grouted a minimum 2 courses below plank bearing
- 8" pre-cast hollow core planks
 - Conform to latest edition of ACI 318
 - Steel bearing will contain weld plates spaced 4' O.C. max.
 - o F'c=5000 PSI
- Steel beams and columns
 - o Typical beam sizes: 12 X 26 and 14 X 43
 - o Grade 50 or ASTM A992
 - Fabricated and erected in accordance to the latest edition of AISC specifications.
- Concrete columns, footings, and slabs
 - Mixed and placed in accordance with ACI 318 "Building Code Requirements for Concrete"
 - o Footings and slabs f'c = 3000
 - o Columns f'c =4000

Codes

- The International Building Code 2003
- The American Concrete Institute
 - o Section 530.1: Masonry
- The American Institute of Steel Construction

Framing

GENERIC 2ND-51" LEVEL FRAMING PLAN NOT TO SCALE

Structural Design

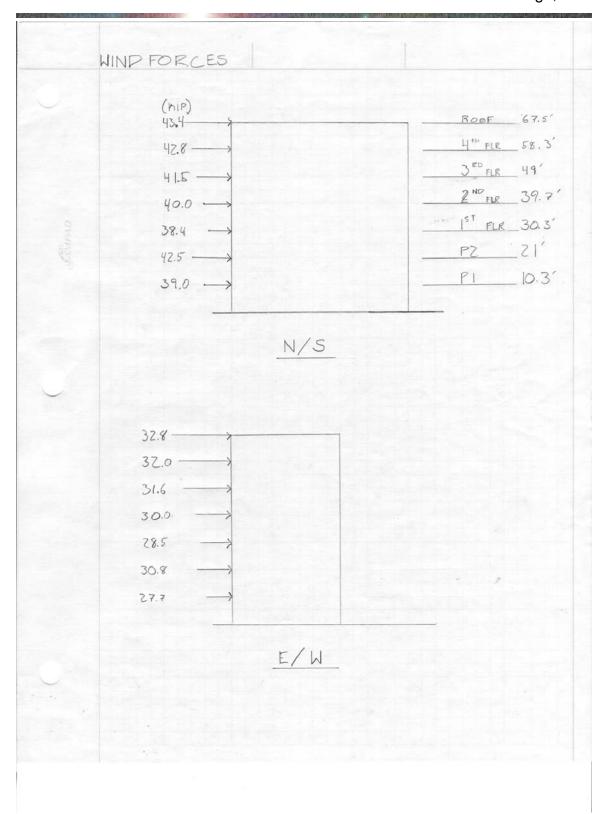
The structural design is dominated by the load-bearing CMU exterior walls. This system also crosses north to south at particular portions of the interior building in order to be the primary lateral force resisting system. This structure has a number of benefits in the Centre Court Apartments. The added convenience of bearing the pre-cast hollow core slabs. Pre-cast hollow core concrete slabs make up at least 90% of all floor slabs in the building and the concrete to concrete block connection cuts down on the number of bearing plates that would be needed if the number of slab to steel connections were increased.

Another benefit of this system is the simplification of the beam to column connections throughout the building. Since no moment frames are required, all moment connections have been completely elevated from the building. There are also two non-structural benefits to the CMU design: the fire rating requirements for apartment buildings and the way it compliments the application of the aesthetic stucco applied to the exterior of the building.

The remaining interior loads are carried by a series of wide flange beams, which distribute that load to steel columns in the top five floors. The bottom two levels of parking deck then convert to concrete columns, which at the end drop the load onto the 6' X 8' spread footings.

Loads

Gravity Loads have been calculated in accordance with ASCE 7-05 with the Live Loads interpreted from section four. Assumptions were made for proper distribution of Gravity Loads.


Dead Load		
Hollow Core Planks	60	psf
Concrete	150	pcf
Partitions	15	psf
MEP	10	psf
Misc	5	psf
Brick	38	psf
8' CMU	60	psf
Windows	8	psf
Live Loads		
Coridors	100	psf
Garages	40	psf
Private Rooms	40	psf
Public Rooms	100	psf
Roof	20	psf
Snow	21	psf

Seismic Analysis

					Load	Shear	Moment
Level	Wx (kips)	hx (ft)	Wxhx ^k	Cvx	Fx (K)	Vx (K)	Mx (FT.K)
Roof	1,369	67.54	173,995.29	0.22	52.40	0.00	3,539.19
5	1,675	58.33	179,845.13	0.23	54.16	52.40	3,159.34
4	1,683	49.00	147,867.18	0.19	44.53	106.56	2,182.09
3	1,683	39.66	115,944.97	0.15	34.92	151.10	1,384.87
2	1,683	30.33	85,172.53	0.11	25.65	186.02	778.00
1	1,802	21.00	59,735.32	0.08	17.99	211.67	377.79
P1	1,524	10.34	22,369.34	0.03	6.74	229.66	69.66
Totals	11,420		784,929.76		236.39	236.39	11,490.95

Wind Analysis

Wind An	ialysis				-				14	T							
			The second secon	Pressures	es												
				S/N		-	E/W		0	Area	Forces (kip)	200	Shear((kip)	ä	(ft.k)	Area
Ht.	L hx	Ķ	Zb	Windwal	eeward	Side Wa	Vindwai	Leeward	Side Wal	S/N	N/S	>	S/N	E/W		E/W	E/W
9.21 R	1000			=	-6.59	-9.23	10.67	-2.64	-9.23	2,468	43.41	7	0	0	331	521	
9.33 4				10	-6.59	-9.23	10.19	-2.64	-9.23	2,500	42.75	54	43	8	193	440	
9.33				10	-6.59	-9.23	10.01	-2.64	-9.23	2,500	41.52	4	98	15	333	364	
9.33				σ	-6.59	-9.23	9.39	-2.64	-9.23	2,500	39.97	6	128	23	385	280	
9.33 1	1 30.32	0.71	12.5	ω	-6.59	-9.23	8.78	-2.64	-9.23	2,500	.78 -6.59 -9.23 8.78 -2.64 -9.23 2,500 38.43 6.	7	168 30 1,1	30	65	203	588
10.7 P2				_	-6.59	-9.23	7.79	-2.64	-9.23	2,953	42.46	8	206	36	168	166	
10.3 P1				_	-6.59	-9.23	7.05	-2.64	-9.23	2,861	39.02	7	249	44	103	73	
											287.56	46	288	21	11,502	2,047	1,100
!	Internal	Internal Pressure=	II gr	qh(Gcpi)= +/- 2.792 lb/sf	= +/-	2.792 IL	/st		1					1995			

Spot Checks

There are three spot checks included in the appendix. The first is of an interior column on the second level of the parking deck (second level overall), the second is a masonry shear wall check of an interior shear wall on the top level of the building, and third is a check of the punching shear capacity of an interior spread footing.

No hand spot check was done for the hollow core slab system due to the complex nature of the design by the manufacturer of these products.

All spot checks complimented the original design and all over-design can be accounted for. See the appendix for more detail.

Apendix

Loads

Snow

Live Load Reduction

Wind

Seismic

Spot Checks

Column

Shearwall

Punching Shear

0	LIVE LOAD REDUCTION		
	L= Lo (0.25 + 15 Vhu A+		
	L= Lo (.25 + 15 / 1276)		
	LL ROOF REDUCTION		
	R=1 R=12-0.00((319)=0.881		
	Le= Lo 6.881		
		1 1	

SNOW LOADS	
FLAT ROOF Pg= 0.7 Ce Ct IPS	
Ps=30 I=1.0 Ct=1.0	
Ce:1.0 Pg:0.7(30):21 PSF	

ASCE7-05 6.5 Method 2- An Wind Analysis	alytical Proce	edure		
Height Current Story Height Basic Wind Speed Wind Directionality Importance Factor Exposure Presure Coeficient	h= z= V= Kd= I=	67.54 10.33 90 0.85 1	FT mph	only with load combinations of 2.3 & 2.4 Table 6-3
Topographic Factor	Kh= Kzt=	0.88 1		interpolated
Gust Effect Factor	G=	0.85		
Velocity Preasure	qz= qh= GCpi=	17.626 15.511		Kz add on other graph
Internal Pressure Coef.	+/-	0.18		
Wall Pressure Coefficient	_	E/W		NI /C
wan Pressure Coemicient	5	E/ VV		N/S
wan Fressure Coemcient	L B L/B	270 60.67 4.45	FT FT	60.67 270 0.224703704
Leeward Windward Side Wall	L B	270 60.67	FT	60.67 270
Leeward Windward	L B L/B Cp= Cp=	270 60.67 4.45 -0.2 0.8	FT	60.67 270 0.224703704 -0.5 use qh 0.8 use qz
Leeward Windward Side Wall Roof Pressure	L B L/B Cp= Cp=	270 60.67 4.45 -0.2 0.8	FT	60.67 270 0.224703704 -0.5 use qh 0.8 use qz

PG I		
	SEISMIC EVALUATION	
	LAT: 40.7978 LON: 77.2541	
	USEING SOFTWARE FROM USGS WEBSITE So= 0.157 g Si= 0.050 g	
	SITE CLASS B	
	Fe = 1.0 Fv = 1.0	
	SMS = Fa Ss = 0.1579 SMI = Fy S1 = 0.050g	
	SDS= 35 MS = 0.10 Eg SDI= 35 MI = 0.033g	
	LATERAL FORCE RESISTING SYSTEM: ORDINARY REINFORCED MASONEY SHEAR WALLS	
	IMPORTACE FACTOR I= 1.0	
	SEIZMIC DESIGN CHAGORY: A	
	SEIZMIC DESIGN CNINGORY: A	

P3 Z	
	Ta = Ctho
	Ta = (0.2)(67.54)0.75 = 0.47
	Cu = 1.7
	T= 0.47 (1.7)= 0.7993 OR 1.25 Hz
	6+ = 0.2
	(SDS(R/1) = 0.105/2/1) = 0.0525
	(5=MW) 5 DYT[(4)] = 0.033/799(z) = 0.0207
	(5=Mi) $SD/T[(4)] = 0.033/799(z) = 0.0207\frac{SDITL}{T^2(N_I)} = \frac{(0.033)(6)}{(0.799)(2)} = 0.1239$
	(T2 (MI) (0.799/(2)
	Tu= G
	C5:0.0207
	V= Cs W = 0.0207 (11,420H)=Z36.394
	K=1.15

Dead Loads of Centre Court Apartments for Seismic Analysis

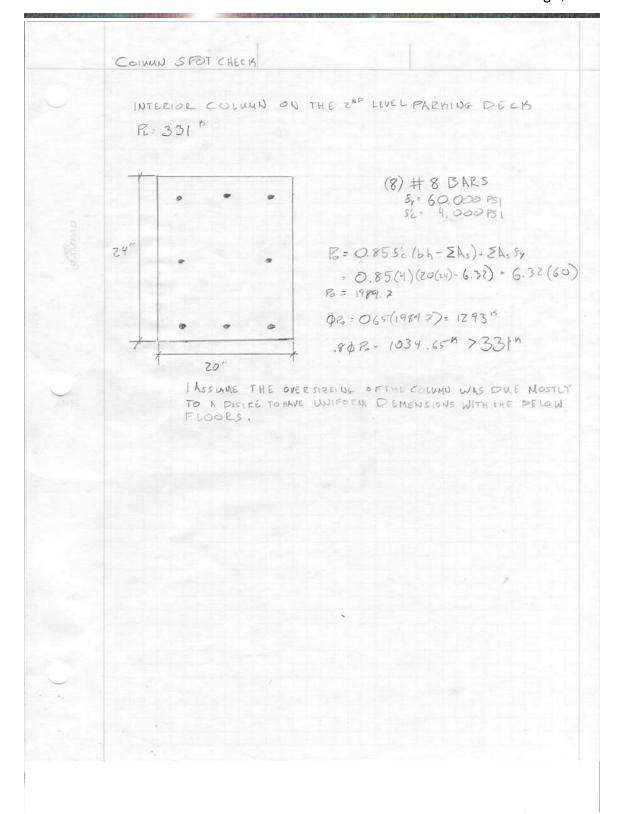
ads of C		partments for	Seismic Ana	iysis	
	•				
	Misc.				
Area	Loads	Slab Loads	Weight	Weight	Total
13,900	312,750	834,000	196,122	26,566	1,369,438
13,900	417,000	834,000	389,506	34,911	1,675,417
13,900	417,000	834,000	397,330	34,911	1,683,241
13,900	417,000	834,000	397,330	34,911	1,683,241
13,900	417,000	834,000	397,330	34,911	1,683,241
16,200	364,500	972,000	359,000	106,185	1,801,686
16,200	190,350	972,000	217,423	144,120	1,523,893
	2,535,600	6,114,000	2,354,040	416,516	11,420,156
ad					
ore					
	60	psf			
:	150	pcf			
S	15	psf			
	10	psf			
	5	psf			
	38	psf			
	60	psf			
;	8	psf			
		•			
		LENGTH	WEIGHT		
W14X	43	356	15308		
	Area 13,900 13,900 13,900 13,900 16,200 16,200 ad ore	Partitions, MEP, & Misc. Area Loads 13,900 312,750 13,900 417,000 13,900 417,000 13,900 417,000 16,200 364,500 16,200 190,350 2,535,600 ad ore 60 150 5 15 10 5 38 60 8	Partitions, MEP, & Hollow Core Misc. & Slab Loads 13,900	Partitions, MEP, & Hollow Core Misc. & CMU Wall	MEP, & Misc. & CMU Wall Col. & Bm Area Loads Slab Loads Weight Weight 13,900 312,750 834,000 196,122 26,566 13,900 417,000 834,000 389,506 34,911 13,900 417,000 834,000 397,330 34,911 13,900 417,000 834,000 397,330 34,911 13,900 417,000 834,000 397,330 34,911 16,200 364,500 972,000 359,000 106,185 16,200 190,350 972,000 217,423 144,120 2,535,600 6,114,000 2,354,040 416,516 ad ore 60 psf 5 psf 150 pcf 5 psf 38 psf 60 psf 60 psf 8 psf 60 psf 8 psf

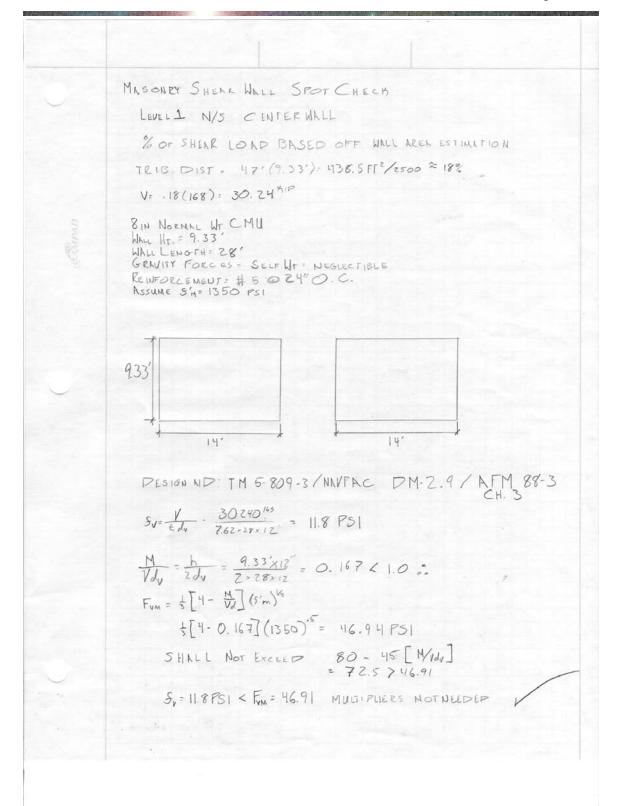
Beams			LENGTH	WEIGHT
F2-Roof	W14X	43	356	15308
	W12X	26	112	2912
			TOTAL	18220
F1	W18X	55	17	935
	W24X	68	21	1428
	W27X	146	72	10512
	W18X	76	35	2660
	W14X	48	12	576
	W12X	26	112	2912
	W14X	43	356	15308
			TOTAL	34331
P2	W14X	34	35	1190
	W12X	26	12	312
	W14X	45	288	12960
	W12X	30	88	2640
			TOTAL	17102

Concrete beam wt. included in wall estimate.

	НТ	W10X	W14X	20X24 CONC	20X20 CONC	WT
Columns	s	49	90	500	4.17	
1 to 5	9.33	31	3	0	0	16691.37
P2 & P1	10.66	13	3	22	2	127017.5244
			3	_	0	

Half of the floor above and below are used for the seismic dead loads.


Column Spot Check Loads


		Self							
Level	Trib Area	Wt.	DL	L _o (psf)	Influence Area	Reduction	LL	DL	Snow
	ft ²	lbs	psf	psf	ft ²		kip	kip	psf
Roof	319	5000	90	20	1276	0.881	5.62	33.71	21
5	319	5000	90	40	1276	0.67	14.17	67.42	
4	319	5000	90	40	1276	0.67	22.72	101.13	
3	319	5000	90	40	1276	0.67	31.27	134.84	
2	319	5000	90	40	1276	0.67	39.82	168.55	
1	319	5000	90	40	1276	0.67	48.37	202.26	

1.2D+1.6L+.5S=

330.598848 Kip

276.468128

PUNCHING SHEAR IN SPREAD FOOTING SPOTCHECK LOAD FROM COLUMN = 3904 Vc= 475'2 bod bo = 2/20+12) + 2(24+12)= 136 Vc = 4/4000 136(12)/1000 = 412.8 > 3900